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Fig. 1. Examples of artistic parallel coordinates: (left) parallel-coordinates matrix, (center) stardinates, (right) traditional parallel-
coordinates layout.

Abstract—We employ common information visualization techniques such as parallel coordinates or stardinates as a tool for artistic
image generation. Our technique is based on rendering footprints of continuous density distributions as they emerge from modeling
data with uncertainty or estimating probability densities. By compositing density footprints with alpha-blending, we obtain visually
pleasing images from high-dimensional input data. We further give examples of a number of controls that can be used to tailor the
outcome of the algorithm.

Index Terms—Parallel coordinates, density estimation, infographics, art

1 INTRODUCTION

Typical information visualization techniques are employed to commu-
nicate quantitative or qualitative information visually [25] or to pro-
vide means for explorative data analysis [26]. The emerging diagrams
are explicitly designed to show the numbers [4] with as few ink as pos-
sible and to focus on clarity and accuracy instead of aesthetics. As one
particular example, parallel coordinates are based on projective geom-
etry [13] and can be used to visualize multidimensional data in two
dimensions using points, lines, or other geometry [9]. In this paper,
we extend the traditional line-based rendering of parallel-coordinates
plots to obtain artistic images and illustrate the effect of changing pa-
rameters such as the order or the layout of axes.

Our approach is based on modeling data points as probability den-
sity distributions, similar to the well-known kernel density estimation
(KDE), a technique widely applied in statistical data analysis [24].
However, instead of computing a density that approximates the true
(but typically unknown) overall probability density distribution of a
given dataset from the contributions of many samples, we compute
the footprint of each data point in parallel coordinates and employ
alpha-blending to obtain an image of the dataset.

2 RELATED WORK

There are many ways to create artistic images using well-known al-
gorithms that produce fractals [2] or compute solutions to famous
problems in computer science, such as the traveling-salesman prob-
lem [15]. In this paper, we exploit the theory of parallel coordinates,
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density estimation techniques, and image compositing, to devise a new
rendering method that produces aesthetic visuals and allows for a wide
range of controls.

Parallel coordinates and the point–line duality were first published
in the context of nomography [17]. The mathematical model of par-
allel coordinates and many generalizations using projective geome-
try were further developed by Inselberg [13], who recently published
the first textbook covering mathematical proofs, generalizations, and
applications to data analysis for this multidimensional visualization
technique [14]. Wegman introduced parallel coordinates for high-
dimensional data analysis [27] and clustering [28]. A recent survey on
visualization techniques for parallel coordinates has been presented by
Heinrich and Weiskopf [9].

In order to mitigate the clutter of lines resulting from a large number
of samples, various density-based approaches to rendering parallel co-
ordinates were proposed in the visualization literature, including trans-
parency [27] and binning [1, 21]. We employ a line-density model [19]
to compute footprints of data samples in parallel coordinates by trans-
forming the respective density distribution with the point–line duality.
Similar models can be applied to visualize densities from spatiotempo-
ral data [6, 8] and uncertain data [3] in parallel coordinates. While we
share the density model for individual samples, we employ a different
compositing algorithm and thus do not obtain a density distribution in
parallel coordinates that resembles a density estimate of the input data.

McDonnell and Mueller [18] use edge bundling [11], opacity, and
shading effects when rendering parallel coordinates. While they focus
on showing structures in the data such as cluster density, our method
is aimed at rendering visually pleasing images and can be used with
any type of input data.

Stardinates [16] use a radial layout of axes with a similar representa-
tion of data points as polylines. We extend our density-based approach
from parallel coordinates to the radial layout of stardinates.

To illustrate the generality of our approach, we demonstrate another
extension of the technique to the parallel-coordinates matrix [7] that
allows us to visualize all pairwise relations of a multivariate dataset in
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Fig. 2. Point–line duality between 2D Cartesian coordinates (left) and
parallel coordinates (right): data points defined in the data domain are
mapped to lines in the parallel-coordinates domain and vice versa.

a manner similar to the scatterplot matrix.

3 MATHEMATICAL MODEL

In this section, we briefly introduce the mathematical model and the
construction of traditional parallel coordinates. Then, we explain the
density model applied in our technique and the computation of foot-
prints.

3.1 Data Domain
Multidimensional points are given in the data domain, which consti-
tutes the set of N-dimensional real values RN , N ∈N+ (Figure 2). We
denote dimensions using indexed letters xi with 0 < i ≤ N. A point
P ∈ RN is denoted by its coordinates P = (p1, p2, . . . , pN) for dimen-
sions xi. The corresponding vector is p = (p1, p2, . . . , pN)

T.

3.2 Parallel-Coordinates Domain
A parallel-coordinates system for N-dimensional data is constructed
by placing N copies of the y-axis

X i : x = di, 0 < i≤ N

at horizontal positions dN = (d1,d2, . . . ,dN)
T with respect to the em-

bedding xy-Cartesian coordinate system, as illustrated in Figures 2
and 3. Accordingly, the N-dimensional point P ∈ RN is mapped
to a polyline intersecting axes at the respective coordinates (di, pi).
Figure 3 illustrates the construction of a 5-dimensional parallel-
coordinates system.

For N = 2, a point–line duality between Cartesian and parallel co-
ordinates can be established [13, 17]. As shown in Figure 2, a point
A = (a1,a2) in Cartesian coordinates is represented as a line A in par-
allel coordinates, and a point ` in parallel coordinates is mapped to a
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Fig. 3. A parallel-coordinates system with N = 5 dimensions. The
bold polyline represents a five-dimensional point by joining the (stippled)
lines between neighboring pairs of axes.
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Fig. 4. Common patterns in Cartesian coordinates (top) and their dual
representation in parallel coordinates (bottom). The envelope of lines is
highlighted for the ellipse–hyperbola duality.

line ` in Cartesian coordinates. Figure 4 shows a number of patterns
that can be derived from the point–line duality [14]. Of special interest
for this work is the ellipse–hyperbola duality because it can be used to
map Gaussian distributions to parallel coordinates.

3.3 Density Model
Instead of rendering discrete lines (as in Figure 5, left), we use two-
dimensional normal distributions centered at the respective coordi-
nates for each point P and pair of dimensions (i, j), i 6= j to compute a
density at any location x = (xi,x j)

T with respect to the xix j Cartesian
coordinate system:

gp(x) =
1

2πσ2 exp
[
−||x−p||

2σ2

]
(1)

with mean vector p = (pi, p j)
T and standard deviation σ .

Based on the point–line duality, density in parallel coordinates is
obtained by transforming the footprint given in Equation (1) from
the data domain to the parallel-coordinates domain, resulting in a
point-density that can be evaluated at any point (x,y) in the parallel-
coordinates system [19]:

hp(x,y) =
1√

2πσ
exp

[
−
(y− py)

2

2σ2

]
, x,y ∈ [0,1] (2)

where py = (1−x)pi +xp j is linearly interpolated from the respective
point-coordinates pi and p j at the axes. Note that we use normalized
coordinates in the range [0,1] for the sake of simplicity. The con-
struction of the overall plot can be split into the construction of N−1
independent parallel-coordinates systems for two-dimensional points,
each emerging from a two-dimensional data domain. The final plot is
then formed by placing the parallel axes consecutively on the plane.

3.4 Footprint Computation
The footprint of a point in two-dimensional parallel coordinates
can now be computed by evaluating Equation (2) in the parallel-
coordinates domain for all consecutive pairs of axes. Figure 6 shows
the density footprint of a point in Cartesian coordinates and its dual
representation in parallel coordinates (note the hyperbolic shape of the
contours in the footprint of parallel coordinates). To speed up compu-
tation, we pre-compute a single footprint for p = (0,0)T and σ̃ = 0.01
and store the result in a texture of fixed resolution. Then, for every
data sample, the footprint is scaled and translated according to the
point-coordinates of the current data point and a user-defined width w,
effectively resulting in a scaled standard deviation σ = σ̃w. Another
option is to render a screen-filling quad and evaluate Equation (2) for
every pixel in a fragment shader. Note that the width of a footprint
only depends on σ , which can be chosen freely to control the dimen-
sions of individual footprints. A comparison of different values for σ

is given in Figure 9.

4 IMAGE COMPOSITION

In the previous section, the computation of footprints for individual
points in parallel coordinates was presented. For a set of points, the re-



Fig. 5. Traditional parallel coordinates (left) compared to our technique (right) using density-based footprints. Both examples show the same data
(a subset of the ASA cars dataset [23]). The hyperbolic shape of the footprints in combination with alpha-blending is visually more appealing, while
more details and insight into the structure of the data can be seen from the discrete rendering.
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Fig. 6. Footprints of a normal distribution in Cartesian coordinates (left)
and parallel coordinates (right). The density as computed by Equa-
tions (1) and (2) is mapped to a grayscale texture, where low values
are mapped to black and high densities are mapped to white. The ge-
ometry used to render the footprints is obtained by mapping vertices of
a quad located at p = (pi, p j)

T to the corresponding parallel-coordinates
system. Width and height of the quad are controlled by σ .

spective footprints are composited [22] into the final image, where dif-
ferent compositing operators yield different visual results (Figure 7).
With additive blending, the contributions of each footprint to the fi-
nal density are accumulated, which effectively produces a continuous
parallel-coordinates plot [8, 19] (up to a constant scaling factor); here,
individual footprints vanish and cannot be distinguished by their ge-
ometry. In contrast to additive blending, individual footprints remain
visible when alpha-blending is used instead.

Figure 5 compares the traditional discrete rendering model with
aesthetic parallel coordinates for the ASA cars dataset [23]. The same
data is used in Figure 7 to illustrate the difference between our ren-
dering model and the kernel density estimate for parallel coordinates,
where color has been mapped to the final density. Note how the den-
sity estimation reveals dense and sparse areas that cannot be seen using
our technique, as the superimposition of samples using alpha-blending
makes the visual signature of the final image heavily depend on the or-
der of samples being rendered. Figure 8 shows the same dataset with
a different order of samples.

5 ARTISTIC CONTROL

There are many parameters that allow us to control how the final image
is created. As with traditional parallel coordinates, these include the
input data, the order and the layout of axes, as well as parameters of
individual footprints such as color and size.

5.1 Layout

We first extend our rendering model to other layouts by employ-
ing simple transformations to the axes of single or multiple parallel-
coordinates plots.

5.1.1 Polar Coordinates
Stardinates [16] can be obtained from parallel coordinates by trans-
forming the embedding xy-coordinate system to polar coordinates and
connecting lines between the emerging axes. The same footprints as
obtained from Equation (2) can now be used to render the same hyper-
bolic shapes as for “linear” parallel coordinates, which is illustrated in
Figure 10 for a set of cars and a dataset generated by the simulation
of a parameterized biological reaction network [5]. Note that in order
to circumvent the singularity emerging at the center of the coordinate
system, we added a small offset to the minimum value for each axis,
which effectively results in a “hole” at the center of artistic stardinates.

5.1.2 Matrix Layout
In parallel coordinates, the order of axes has a large impact on the fi-
nal visualization. For data analysis, this is sometimes referred to as
the axis-order problem [9]. As the order of axes determines which
of all possible axis-aligned 2D projections of the N-dimensional input
dataset are exhibited, choosing a “good” permutation is difficult and
highly depends on the data-analysis task to be conducted. A straight-
forward solution is to enumerate all permutations and to visualize one
parallel-coordinates system for each axis order. Due to the combi-
natorial explosion, however, this is usually not feasible, such that a
number of heuristics have been proposed (see [9] for an overview). In
order to visualize all pairwise relations of an N-dimensional dataset,
the parallel-coordinates matrix [7] can be employed. This approach
is based on a Hamiltonian decomposition of the complete graph KN ,
where nodes represent dimensions and edges represent 2D relations
between dimensions [12]. For N dimensions, a set of N

2 parallel-
coordinates plots are obtained for N = 2M and N+1

2 for N = 2M + 1.
The parallel-coordinates matrix is then constructed by rendering a list
of single parallel-coordinates plots in arbitrary order. As the matrix
is independent of the rendering algorithm for each of the individual
plots, our technique can easily be applied to the parallel-coordinates
matrix, as illustrated in Figure 11.

5.2 Axis Order
While the matrix layout presented in the previous section is one possi-
ble method to circumvent the axis-order problem, both the traditional
“linear” layout of axes as well as the radial layout used for stardinates
depend on the order of axes. Figure 12 shows the effect of changing
the axis order using the same input data.

5.3 Color
The color of each footprint is yet another source of variation that we
exploited to control the appearance of artistic parallel coordinates. For
data analysis, color is typically used to indicate group membership of
lines to clusters or to encode other data-driven parameters and thus is
required to adhere perceptual properties such as a uniform change in
perceived importance. In the arts, any choice of color that is visually



Fig. 7. The difference of employing alpha-blending (left) and additive blending (right). Again, the same subset of the ASA cars dataset was used
to create both visualizations. The left image shows our technique with larger standard deviations than in Figure 5. For the right image, additive
blending was employed to obtain a kernel density estimate of the data, which was further mapped to color for illustration.

Fig. 8. Effect of the order of samples on the resulting image. Both visualizations were created using the same dataset, but with a different order of
footprints. While the order was randomized for the left image, the parallel-coordinates plot on the right was created with data points grouped by the
last (rightmost) axis.



Fig. 9. The width of a footprint is determined by the standard deviation σ . The values for σ used here are: 0.025 (top left), 0.1 (top right), 0.15
(bottom left), and 0.25 (bottom right).

Fig. 10. Transforming the parallel-coordinates system to polar coordinates results in a radial representation of footprints. The left image was created
from 5 attributes of cars and σ = 0.1, while the right image was rendered with σ = 0.055 from a dataset comprising six dimensions of a biological
reaction network.



Fig. 12. The effect of the order of axes for the traditional layout of axes in artistic parallel coordinates.

Fig. 13. The color of samples is another way of generating many different variants for artistic parallel coordinates. Note that a black background
(not shown here) gives better results when viewed on a computer display, while a white background is generally more attractive on white paper.



Fig. 11. Parallel-coordinates matrix of another cars dataset [10] us-
ing our technique. The matrix comprises three individual parallel-
coordinates plots that are ordered in a list. By adjusting the vertical
space between the plots, footprints start to overlap.

attractive can be used. Figure 13 provides some examples where a
single color was applied to all footprints (by changing the color map
that was used in Figure 6).

5.4 Input Data
Obviously, the input data is a parameter with a high impact on the vi-
sual result as it determines the position and orientation of individual
footprints. In visual data-mining applications that employ parallel co-
ordinates, characteristics of the visualization are typically used to find
patterns in the data. For parallel-coordinates art where image aesthet-
ics need to be controlled, the input data depends on the desired visual
effects. As a further investigation of this dependency was out of the
scope of this paper, we used only three datasets in this paper: two rep-
resent characteristics (as axes) of a set of cars (as lines or splats) taken
from different sources [10, 23], and one is from a systems biology ap-
plication [5] where axes denote parameters of a cell model and data
points represent simulation results for individual cells.

Interactivity is another important aspect when working with
parallel-coordinates, as it allows an analyst to change parameters of
the visualization. For data-analysis tasks, most interaction techniques
implement the selection of data points or the manipulation of axes. As
the input data is just another parameter that allows the user to control
the visual output of artistic parallel coordinates, it would certainly be
possible to extract data from interacting with the user, e.g., by tracking
the mouse input, and use that data as input to our algorithm.

6 CONCLUSION AND FUTURE WORK

We presented a density-based rendering model for parallel coordinates
that can be used to obtain visually pleasing images and showed how
to control some of the parameters used in the model. In contrast to
existing methods in statistical data analysis that typically aim to visu-
alize (probability) density estimates in order to analyze data, our tech-
nique is not designed to reveal new insights into the dataset at hand but
rather generates visually pleasing images. We showed how the method
can be extended to other line-based visualizations such as stardinates.
Other possible extensions are traditional line diagrams as they are used
to convey time series such as stock return values or temperature fore-
casts. Other footprints can be computed using the same density-based
model, such as ellipses for scatterplots or curves for parallel coordi-
nates (see the overviews [9, 20] for more information on curve-based
parallel coordinates and bundling).

The final image depends on the standard deviation σ , the order and
layout of axes, and the order of data samples. While we have chosen
to use a fixed value for the standard deviation for every sample and
dimension, another source of variation could be added by assigning
different values to σ for different samples or by changing the standard

deviation between axes. The color of footprints and the background
color can be adopted freely. Black background color gives good results
on computer screens; we have chosen to use white as background for
the production of the figures in this paper.

As mentioned in Section 5.4, we would like to investigate how the
final images depend on the data and how the input data can be used to
control the visual output of artistic parallel coordinates. In particular,
time-varying input data could be used that would allow us to obtain
smooth animations, e.g., in order to react to user input.
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