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ABSTRACT

Neuronal connectivity graphs can give valuable insight into the
structure of the brain and patterns of functional activity. In this
paper we describe a connectivity visualization technique using con-
trasting styles to emphasize the differences between pairs of graphs.
Our proposed technique enables interactive exploration of connec-
tivity graphs at the various levels of the hierarchical structure of
the brain - atlas regions, brain lobes and cerebral hemispheres. We
demonstrate our methods on data obtained from matched pairs of
subjects in a Parkinson’s disease (PD) study. Control group data
is displayed in a smooth, organic style with continuous transitions
between views at different levels of the brain hierarchy using edge
bundling and a new node bundling technique. Data from the PD
group is displayed with glitch and noise effects inspired by PD
symptoms, highlighting the differences between each subject and
their matched pair from the control group. We conclude by de-
scribing avenues for further evaluation of this preliminary work.

Keywords: glitch, graph visualization, neuronal connectivity, neu-
roimaging

1 INTRODUCTION

Node-link diagrams are commonly used to visualize graphs which
may represent, for example, transport networks, social relations and
gene ontology. But even graphs of a moderate size can result in
an unreadable “hairball” visualization, such as in Figure 1, right.
In this work we describe contrasting visualization techniques for
comparing neuronal connectivity graphs which reduce visual clutter
using edge and node bundling, and emphasize areas of impaired
connectivity with glitch art effects.

The central nervous system (CNS) is an interconnected network
of cells with structural features at a range of spatial scales. Visual-
izing this network and understanding its features is a critical part of
investigating the processes and diseases of the brain. Several imag-
ing modalities can be used to assess neuronal connectivity at its
various scales, including functional MRI (fMRI) [5], array tomog-
raphy [26] and diffusion-weighted MRI (DWI) [8]. Reconstructing
a complete map of the human “connectome”, the set of all neu-
ronal connections in the brain [35], is expected to lead to advances
in diagnosis and treatment of many disorders, such as Parkinson’s
disease.

In this work we address the problem of visualizing macroscale
structural connectivity graphs computed from DWI, and demon-
strate our methods on data from a Parkinson’s disease study. We
use edge and node bundling to present a clean, smooth and unclut-
tered view of control group subjects to the user. By continuously
transitioning between views at different levels of the brain hierar-
chy, we allow the user to maintain visual context of the parent-child
relationships implicit in the data. Similar to the way in which edge
bundling techniques can bend and merge together similar edges,
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our node bundling method can continuously group together related
nodes in the graph by using a hybrid graphical representation: para-
metric curves for the edges and implicit curves for the nodes. Dif-
ferences between datasets are emphasized using visual effects in-
spired by glitch art and which are evocative of Parkinson’s disease
(PD) symptoms, in order to draw attention to local areas of impaired
connectivity.

2 BACKGROUND

In this section we present an overview of related work, including
connectivity computation, graph visualization, Parkinson’s disease,
and the glitch art style that inspired our visual design.

2.1 Connectivity mapping

DWTI has been used, quite effectively, to assess macroscale struc-
tural connectivity in the brain. We cannot provide a complete
overview here, but Pfister et al. [29] and Margulies et al. [21]
provide introductions to the imaging process and surveys of the
related visualization literature. Tractography [4] — the process
of reconstructing white matter fiber pathways — forms the basis
of many connectivity mapping algorithms. However, visualizing
whole brain connectivity by displaying all possible fiber tracts is
impractical due to the large number of fibers and the occlusion of
interior fibers by cortical fibers near the surface of the brain. In-
stead, connectivity can be quantified statistically based on the num-
ber of fibers that connect one region to another. Scalar field visual-
ization can be used to display connectivity from a single region to
all others. A volume rendered connectivity map [24, 23] using this
approach is shown in Figure 1.

The work described in this paper is an extension of our previous
work on GPU-based connectivity mapping [24, 23] and connectiv-
ity graph visualization [22]. As in [23] we compute a connectivity
matrix, C; j, on the GPU based from 4th-order fiber orientation ten-
sors [37] computed from high angular resolution DWI. The row and
column indices of C; j correspond to anatomical regions defined by
the automated anatomical labeling (AAL) brain atlas [36] which
consists of 116 gray matter structures. A slice of the atlas is shown
in Figure 4. We have further grouped the 116 regions into brain
lobes (shown in Table 1) and brain hemispheres (left, right, bilat-
eral) to define a hierarchical structure. The connectivity matrix can
be interpreted as the adjacency matrix which defines a connectivity
graph. A spatial embedding of the graph is determined by position-
ing nodes at the centroid of their corresponding atlas regions. For
the 2D visualizations presented in this paper, those node locations
are projected onto one of the standard imaging planes.

2.2 Connectivity visualization

The structure of small connectivity graphs can sometimes be re-
vealed by directly displaying the connectivity matrix as a col-
ormapped image (see Figure 1, left). Many variations on this ap-
proach have been proposed [12, 33, 17], but the drawback shared
by these methods is that the anatomical meaning of the nodes, as
conveyed by position, is lost.

Node-link visualizations of graphs tend to suffer from visual
clutter due to overlapping edges and nodes. This weakness can
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Figure 1: Connectivity matrix visualization(left), volume rendered
connectivity (middle), and a 3D graph of neuronal connectivity (right).
Even though there are only 116 nodes, the interior of the graph is
severely occluded. Sources: [23], [22].

be addressed by using edge bundling [18] to cluster edges and steer
them around nearby nodes. Previous approaches to 3D connectivity
visualization have used this approach [6]. Others have instead used
adjusted node positions, using e.g. a circular layout scheme [19] or
a subway map metaphor [1]. However, these node layout schemes
distort the spatial relations between nodes and the resulting visual-
ization loses some of its anatomical meaning. A general approach
to solving the problem of edge cluttering using node-ring diagrams
was described by Etemad et al. [14]. Their approach eliminates
edge drawing altogether and encodes connectivity using concentric
rings of color.

Node aggregation techniques simplify a graph by allowing a sin-
gle node to visually represent multiple nodes. The applications
include scalable visualization of large graphs [38] and represent-
ing hierarchical relations [13]. Unlike previous approaches, our
node bundling implementation maintains a discrete node-link ap-
pearance, rather than appearing as a heatmap [38], and allows us to
display overlapping groups of aggregated nodes.

We previously [22] developed a 2D connectivity graph visual-
ization approach which introduced a new edge bundling criterion
based on anatomical compatibility, used a node layout based on
AAL atlas region locations and performed additional visual clutter
reduction by separating inter- and intrahemispheric displays. In this
paper we extend those methods by adding

e glitch-style visualization techniques for emphasizing areas of
abnormal connectivity, and

e a graphical technique for displaying hierarchical node aggre-
gation which permits smooth continuous visualization during
graph interaction.

2.3 Gilitch art

The term ’glitch’ was famously used by John Glenn to describe
transient spikes in electrical voltage which led to spacecraft mal-
functions [16]. Much glitch art is inspired by errors that can occur
during transmission or storage of images. Whether intentional or
not, missing data or noise in these processes leads to unexpected
distortions of the resulting image [25]. Sometimes these artifacts
are specific to certain file formats. For example, missing I-frames
in MPEG videos, and modified Huffman tables in JPEG images
lead to characteristic block and raster distortions due to the way
compression is implemented. Experiments in this area can involve
simply corrupting files in a hex or text editor [11], leading to un-
foreseen image distortions, as shown in Figure 2.

Other types of glitches can be implemented by generalizing from
compression/decompression to other types of transformations in the
spatial or color domain and introducing some modification between
the forward/inverse transform steps [31].

In this work we explore a parallel between glitched images and
the corruption of motor and sensory information in the brain due
to Parkinson’s disease. Image glitches are often characterized by a
nonlinear relation between a small error and its resulting drastic vi-
sual effect. Analogously, minor disruptions in brain chemistry and

Figure 2: Glitched images of connectivity graphs obtained by chang-
ing bytes in a JPEG encoded image. Header information control-
ling the width, height and number of color components was left un-
changed.

electrical signaling can lead to major changes in sensory and motor
function. Glitches in the graph visualization serve the practical pur-
pose of emphasizing differences in connectivity between healthy
control subjects and subjects suffering from Parkinson’s disease.

2.4 Parkinson’s disease

Parkinson’s disease is progressive disorder of the CNS associated
with impaired cognitive and motor function. There is no known
cause or cure, but treatment can alleviate the symptoms. Onset is
typically in middle age, and about 60,000 people in the US are di-
agnosed each year. It is estimated that more than 7 million people
worldwide suffer from the disease [27]. A wide range of symptoms
can occur, including rest tremor, bradykinesia (slowness of move-
ment), and rigidity [20]. Changes in vision can include losses of
visual acuity, contrast sensitivity, color discrimination, and motion
perception [2]. Both increases [9] and decreases [34] in creativity
and artistic expression have been reported.

The disease is commonly associated with frontal lobe dysfunc-
tion. Although anatomic T1- and T2-weighted MR images are usu-
ally normal in PD patients, changes in functional connectivity from
fMRI [3] and structural connectivity from DWI [15] have been mea-
sured in PD patients.

3 METHODS

In this section we describe the implementation of our visualization
application which was developed in C++ and OpenGL. The input
to our method is a pair of connectivity matrices computed using the
methods described by McGraw [22]. Our results were generated
using a publicly available dataset from the Neuroimaging Informat-
ics Tools and Resources Clearinghouse (NITRC). The image data
was acquired from 53 subjects in a cross-sectional Parkinson’s dis-
ease (PD) study. The dataset contains diffusion-weighted images
of 27 PD patients and 26 age, sex, and education-matched control
subjects. The matched pairs experimental design explicitly controls
for differences in subject attributes, such as sex and age which can
have an effect on neuronal connectivity. This design permits an
analysis of differences between matched pairs of subjects, rather
than the differences of the averages of groups. The latter approach
can average out differences between individuals and permit outliers
to unduly influence the analysis.

The dataset for each subject consists of 120 diffusion-weighted
images with diffusion weighting factors b=1000 and b=2500
s/mm?, and isotropic 2.4 mm?> voxels. The imaging protocol used
a twice-refocused spin echo sequence in order to avoid distortions
induced by eddy currents. The data were postprocessed to reduce
motion artifacts.

After computing the connectivity matrix, C, for each subject, the
mean and variance of connectivity values for subjects in each group
(PD and control) were computed. A node-link diagram of the re-
sulting intrahemispheric connectivity graph of 904 edges without
edge bundling is shown in Figure 3. There is one node per AAL
atlas region in the graph. Nodes belonging to the same lobe were
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Figure 3: Control group intrahemispheric connectivity graph without
edge bundling.

- Atlas Regions

Figure 4: A coronal slice of T1-weighted MRI overlaid with color-
coded AAL atlas regions (left), and hierarchical structure of the brain
(right) from root to leaves: brain, hemisphere, lobe, region.

assigned the same color, and drawn as circles with radius propor-
tional to node degree (the number of incident edges). The visual
clutter apparent in this image due to overlapping edges will be re-
duced by edge bundling.

3.1 Node Bundling

In this work we extend the concept of edge bundling to the nodes of
a graph. This technique permits nodes to smoothly blend and merge
together for level-of-detail applications or to represent hierarchical
relationships between nodes, such as the hemisphere-lobe-region
relations shown in Figure 4. The different graphical representa-
tions of the nodes and edges require them to be rendered in separate
passes with different shaders. Edges are rendered as line strips, and
nodes are rendered as quadrilaterals or point sprites.

Node bundling requires two rendering passes, detailed below.

Pass 1: point sprite rendering. This pass is rendered to a
floating-point texture, f(x,y), while additive alpha blending is en-
abled. A single point sprite for each node is rendered. Each point
sprite is procedurally textured in the fragment shader with a 2D
Gaussian centered at the middle of the sprite.

Pass 2: isocontour rendering. A full-screen quadrilateral
is rendered. In the fragment shader the isocontour is rendered
by thresholding the texture. The node color is rendered where
f(x,y) > 0, all other fragments are discarded.

In pass 1, when point sprites overlap, additive alpha blending
causes nearby nodes to blend together, as in metaball modelling
[32]. The final image of the graph nodes is an isocontour of a
Gaussian mixture. When nodes are far enough apart two distinct
contours will be seen, but as they become closer they will merge
together into a single contour, as seen in Figure 6. The implemen-
tation of pass 1 is similar to the method described by Zinsmaier et

SO GO o0

Figure 5: The aliasing issue (left) can be addressed by using a
smooth thresholding function (middle). Computing a distance func-
tion estimate permits more precise control over the boundary width

$ 8 o

Figure 6: Node bundling : two graph nodes continuously merge to-

@ O
gether.

al. [38], but our method maintains a discrete node appearance with
a distinct boundary, and we combine nodes based on hierarchical
relations, not only distance.

In our application, we use an anatomical node bundling criterion
- only nodes in the same brain lobe should be bundled together.
Note in Figure 3 that nodes in the same lobe (which have the same
color) bundle together when they are nearby, but remain separate
from, and can even overlap nodes in a different lobe. In order to
achieve this, the nodes of each lobe must be rendered to a separate
floating-point texture. This requires a total of two render passes
per lobe, but the OpenGL layered rendering feature greatly reduces
this number by permitting fragments to be directed to a specific
framebuffer attached texture. Using the definitions in Table 1 and
accounting for the left-right pairs of lobes (except Central Struc-
tures) we require a total of 13 texture attachments to prevent nodes
from different lobes from interfering with each other.

Simple thresholding of the texture values in pass 2 causes alias-
ing, so we use a sigmoid function to soften the boundaries of the
nodes. A pair of sigmoid functions can be used to create an outline
for each node, but the naive implementation will lead to variable
width lines. To overcome this artifact we compute from the texture
image, denoted as f(x,y), a first order estimate of a signed distance
function,

f(xy)

)~ e

()]

The gradient can be estimated using the glsl screen-space deriva-
tive functions dFdx() and dFdy(), but precision issues leave some
artifacts in the results. Instead, we compute the gradient using cen-
tral differences in the fragment shader. The effects of applying soft
thresholding and distance estimation to d(x,y) are shown in Figure
5. The appearance of multiple nodes as they continuously merge
together is shown in Figure 6.

Our application supports interactive selection of lobes and re-
gions. Initially, the atlas regions (the lowest level of the brain hier-
archy described by Figure 4) are shown. Selection of an anatomical
region with the mouse triggers the collapse of all regions belonging
to the same lobe as the selected region. This corresponds to visu-
alizing connectivity at a higher hierarchical level. During collapse,
intraregion edges are faded out. Clicking a collapsed lobe triggers
expansion of the regions back to their original locations. See the
supplementary video for a demonstration of node bundling.
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Temporal Lobe

Hippocampus, Parahippocampus, Amygdala, Fusiform gyrus, Heschl gyrus, Superior temporal
gyrus, Temporal pole: superior temporal gyrus, Middle temporal gyrus, Temporal pole: middle
temporal gyrus, Inferior temporal gyrus

Posterior Fossa

Cerebellum, Vermis, Medulla, Midbrain, Pons

Insula and Cingulate Gyri | Insula, Cingulate gyrus (ant., mid, post.)

Frontal Lobe

Precentral gyrus, Superior frontal gyrus, Middle frontal gyrus, Inferior frontal gyrus, Rolandic
operculum, Supplementary motor area, Olfactory cortex, Gyrus rectus, Paracentral lobule

Occipital Lobe inf.)

Calcarine fissure and surrounding cortex, Cuneus, Lingual gyrus, Occipital lobe (sup., mid. and

Parietal Lobe Angular gyrus, Precuneus

Postcentral gyrus, Superior parietal gyrus,Inferior parietal gyrus, Supramarginal gyrus,

Central Structures

Caudate nucleus, Putamen, Pallidum, Thalamus

Table 1: Lobes of the brain and the AAL regions which comprise them. All lobes, except for Central Structures, consist of left-right pairs.

Figure 7: Node glitch effects. Noise amplitude increases from left
to right. Low frequency noise added (top row), high frequency noise
added (bottom row).

3.2 Glitch Visualization Style

Connectivity graphs visualized using edge and node bundling have
a smooth and organic visual style. This is the approach we use
for displaying connectivity of the control subjects. We display PD
datasets in a glitch style reflecting typical PD symptoms, such as
tremor and visual disturbances. The glitch effects we incorporate
into the visualization include

e Desaturated colors, reflecting the loss of color contrast sensi-
tivity in PD patients

e Jagged edges, reflecting the appearance of lines drawn by
someone suffering from tremor

e Noisy displacement added to the node shape

e Video-style glitch effects of color-separation and block noise
added in image-space.

We avoided using actual JPEG glitches, such as those in Figure
2 since those effects can severely alter the spatial relations between
nodes in the graph, and sometimes make large parts of the image
unreadable due to the appearance of large blocks with low contrast.

Node glitches. The smooth circular shapes of nodes are dis-
placed by noise having amplitude proportional to the absolute dif-
ference in node degree compared to the corresponding node in the
control data. Since we use an implicit representation of the node
shape to permit node bundling it is quite simple to distort the shape
of the boundary. Perlin noise [28] is added directly to the Gaus-
sian function generated in pass 1 of node rendering. Examples of

Figure 8: Edge glitch effects. Noise amplitude increases from left to
right. Low frequency noise added (top row), high frequency noise
added (bottom row). High spatial frequencies result in more self-
intersections.

the displacement effect are shown in Figure 7. We experimented
with using varying spatial frequencies of noise to indicate increase
or decrease in node degree, but relative frequencies proved difficult
to read in a full graph visualization.

Edge glitches. Edges between nodes have 2 octaves of Perlin
noise added, mimicking the effects of lines drawn by Parkinson’s
patients. Such lines can be found in the PD literature regarding ‘spi-
ral analysis’, a test used to assess severity of motor symptoms [30]
by analyzing the drawings produced by patients asked to reproduce
an Archimedes spiral. Similar noisy edges have previously been
used as a metaphor for uncertainty in graph drawing [7]. Sample
edge glitches are shown in Figure 8. As with the node displacement
glitch, it is possible to map the noise frequency to some property,
but in our final results we use only a single frequency. For each edge
the amount of noise added was proportional to the edge connectivity
difference between the Parkinson’s subject and the matched control
subject.

The noisy edge displacement is also motivated by a glitch we ob-
served in the physics simulation which governs the edge bundling
computation. Too high of a timestep can lead to numerical instabil-
ity which manifests as jagged edges. However, this instability can
lead to edges being totally displaced from the image, so we decided
not to use this instability to implement the glitch. Instead, we fake
the glitch by adding noise in the vertex shader. We use the same
edge bundling technique as described in [22], but in our application
bundling is performed in an OpenGL compute shader to maintain
an interactive frame rate. Since the glitch is applied in the vertex
shader, the edge bundling performed in the compute shader is not
affected by the added noise.

Lobe glitches. Color field and scan line glitches corrupt the over-
all image of lobes, as shown in Figure 9. The glitches are applied in
pass 2 of node rendering. Recall that all nodes in the same lobe are
rendered into a single texture, so we can easily corrupt the image of
an entire lobe in the fragment shader. The severity of the corruption
is proportional to the overall intralobe connectivity difference be-
tween the PD subject and the matched control subject. Animation
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Figure 9: Lobe glitch effects. Glitch magnitude increases from left to
right. The effects include distorted scan lines, color channel separa-
tion, and block noise.
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Figure 10: An example of a two node graph with glitch effects on
nodes and edges.

of this effect (see supplementary files) has the timestep distorted by
noise, which mirrors the effects of tremor and visual symptoms of
altered motion perception.

The lobe glitch effects were inspired by the JPEG corruption ef-
fects, but were designed to only corrupt at a small scale and main-
tain readability of the graph. Alternating scanlines have some color
components reduced in magnitude, but even at high glitch levels
the overall hue of the nodes is not changed significantly. The color
channels of the texture were displaced by a low frequency noise
function to mimic a broken CRT. Higher frequency and amplitude
displacement was applied to a small number of rows of the image
to simulate signal transmission noise. Finally color saturation was
boosted. Although Parkinson’s visual symptoms may include loss
of color sensitivity, we found that decreases in saturation were more
difficult to perceive than increases.

A two node synthetic graph with a combination of node, edge
and lobe glitch effects is shown in Figure 10.

Individual and group average connectivity graphs were pro-
cessed and visualized. Statistical significance of average connec-
tivity differences was determined by computing the average differ-
ence in connectivity matrices Cgif = Cpp — Ceontrol- A paired two-
sample t-test at the 5% confidence level was performed for each pair
of nodes (i, j). If the test did not indicate that we should reject the
null hypothesis (that the connectivity in the subjects is equal) then
the edge between i and j was not drawn. Then Cy;sr was used in the
shader when applying glitch effects to the PD average connectivity
visualization.

For individual data, we compute the mean, C_oniro1, and standard
deviation, S, of the control group connectivity values. Connectiv-
ity differences between PD and control greater than two standard
deviations were emphasized with glitch effects.

4 RESULTS

Parkinson’s disease is associated with disrupted intrahemispheric
neuronal connectivity, primarily in the frontal, temporal and pari-
etal lobes [10]. Control group mean intralobe and interlobe con-
nectivity graphs are shown in Figures 11 and 12. The statistically
significant connectivity differences observed in the PD group is em-
phasized in those figures using glitch effects. These are most obvi-
ous in the frontal, parietal and temporal lobes. The graphs shown
in this section were laid out in the coronal imaging plane. Note
that the left-right hemisphere asymmetry obvious in the results pre-
sented here is expected. Possible causes include image noise, hard
thresholding of values during connectivity matrix computations and

lateralization of brain function. Functions such as speech and lan-
guage are known to be controlled by the left cerebral hemisphere,
especially the temporal and parietal lobes.

Though PD changes are primarily intrahemispheric, the edge
bunding behavior is demonstrated on control group interhemi-
spheric connectivity in Figure 13.

Connectivity visualization of a matched pair of subjects is shown
Figure 14. Subject p07183 is a 59 year old male from the control
group, and p06316 is a 60 year old male who has suffered from
Parkinson’s symptoms for 2 years. Large differences in connectiv-
ity within the frontal lobe are emphasized by the jagged edges and
color separation glitches in the graph nodes. (Refer to Figure 12 for
frontal lobe location and color.)

Another matched pair is shown Figure 15. Subject p07519 is a
63 year old male, and p06904 is a 62 year old male with disease
duration of 13 years. The motor abilities of subjects p06316 and
p06904 are most affected on the right side of the body, implicating
the left hemisphere of the brain (shown on the right side of the
figures by radiological convention). In both cases the glitch effects
are most apparent on the right sides of the figures.

5 CONCLUSIONS AND FUTURE WORK

In this exploratory work we have presented methods for glitch style
graph visualization and interactive node bundling. Both techniques
were demonstrated in the context of visualizing neuronal connectiv-
ity graphs computed from a Parkinson’s disease study. The glitch
effects we used to emphasize the differences between PD and con-
trol subjects were inspired by Parkinson’s disease symptoms. Vi-
sual clutter in the graph visualization was reduced by using edge
and node bundling. We demonstrated how the hierarchical struc-
ture of the brain (hemisphere, lobes and regions) can be explored
interactively with continuous visual transitions between hierarchi-
cal levels (e.g. from individual atlas regions to lobes).

Our visualizations results reflect existing knowledge of frontal,
parietal and temporal lobe connectivity changes associated with
Parkinson’s disease, but further evaluation is needed. We have iden-
tified several directions for future work to evaluate the preliminary
results we have presented here, including user studies to assess (1)
the impact of interactive node bundling on the understanding of hi-
erarchical relations in graphs, (2) how glitch-style visualization af-
fects the ability of experts to identify areas of impaired connectiv-
ity in connectivity graphs, and (3) if glitch effects help students and
laypeople understand neuroanatomy and symptoms of neurological
diseases.
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Figure 11: Control group (left) and PD group (right) mean intralobe connectivity graphs.

Figure 12: Control group (left) and PD group (right) mean connectivity graphs. Intralobe edges are colored, and interlobe edges are grey. In
the left hemisphere the graph is collapsed to the lobe level of the hierarchy. Frontal, Parietal and Temporal lobes are annotated F, P and T,
respectively.
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Figure 13: Control group mean interhemispheric connectivity graph.
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Figure 15: Control subject p07519 (left) and PD subject p06904 (right) intralobe (top) and interlobe (bottom) connectivity graphs.



