TABLE OF CONTENTS

Welcome message

Installation

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Artists/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Fiber Optic Ocean</td>
<td>Ozge Samanci, Adam Snyder</td>
</tr>
<tr>
<td>02</td>
<td>Treepedia</td>
<td>Adrienne Jenk</td>
</tr>
<tr>
<td>03</td>
<td>“The Sky is Falling...”</td>
<td>Mauro Martino, Hendrik Strobelt, Owen Conne</td>
</tr>
<tr>
<td>04</td>
<td>Forma Fluens</td>
<td>Scottie Ch-Chieh Huang, Yu-Chun Huang</td>
</tr>
<tr>
<td>05</td>
<td>The Ghost in the Dandelion</td>
<td>Philipp Schmitt</td>
</tr>
<tr>
<td>06</td>
<td>Computed Curation</td>
<td>Tyler Starr</td>
</tr>
<tr>
<td>07</td>
<td>KKK Redress Papers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Artists/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Interstellar: Cross-Scale Space-Scapes</td>
<td>Clarissa Ribeiro, Mick Lorusso, Herbert Rocha</td>
</tr>
<tr>
<td>09</td>
<td>Spatial Magnetic Field Visualization</td>
<td>Inhye Lee, Hyomin Kim</td>
</tr>
<tr>
<td>10</td>
<td>Hidden Dimensions of the Rijksmuseum</td>
<td>Pierre Amelot, John Hwong, Kate McManus</td>
</tr>
<tr>
<td>11</td>
<td>Accurat Design</td>
<td>Giorgia Lupi</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Artists/Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Voyager</td>
<td>Jeremy Muller</td>
</tr>
<tr>
<td>13</td>
<td>VOSIS</td>
<td>Ryan McGee</td>
</tr>
</tbody>
</table>

Demonstrations

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Market’s Emotions</td>
<td>Jennifer Weiler, Kat Fowler</td>
</tr>
<tr>
<td>3D Visualization of Genetic Networks</td>
<td>Kuno Kurzhals, Daniel Weiskopf</td>
</tr>
<tr>
<td>Against the Flow</td>
<td>Stefan Reinhardt, Markus Huber, Daniel Weis-</td>
</tr>
<tr>
<td>Particle Flow Fireworx</td>
<td>Marco Pinter</td>
</tr>
<tr>
<td>Less Ephemeral</td>
<td>Yoon Chung Han, Praful Surve, Subin Kim, Joshua Cuellar</td>
</tr>
<tr>
<td>Causes and Effects</td>
<td>Manuela Garretoño, Pablo Garretoño, Karina Hyland and Tomas Ossandón</td>
</tr>
<tr>
<td>Default Stories</td>
<td>Ben Rydal, Francis A. Pearman, II</td>
</tr>
<tr>
<td>NYC Stop & Frisk and the Interaction Geography Slicer</td>
<td>Aseem Agarwal</td>
</tr>
<tr>
<td>How is Delhi Slowing Down?</td>
<td>Mary Bates Neubauer</td>
</tr>
<tr>
<td>Wage Inequality in Portugal</td>
<td></td>
</tr>
</tbody>
</table>

Data Visualizations

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuno Kurzhals, Daniel Weiskopf</td>
<td></td>
</tr>
<tr>
<td>Jennifer Weiler, Kat Fowler</td>
<td></td>
</tr>
<tr>
<td>Kuno Kurzhals, Daniel Weiskopf</td>
<td></td>
</tr>
<tr>
<td>Stefan Reinhardt, Markus Huber, Daniel Weis-</td>
<td></td>
</tr>
<tr>
<td>Marco Pinter</td>
<td></td>
</tr>
<tr>
<td>Yoon Chung Han, Praful Surve, Subin Kim, Joshua Cuellar</td>
<td></td>
</tr>
<tr>
<td>Manuela Garretoño, Pablo Garretoño, Karina Hyland and Tomas Ossandón</td>
<td></td>
</tr>
<tr>
<td>Ben Rydal, Francis A. Pearman, II</td>
<td></td>
</tr>
<tr>
<td>Aseem Agarwal</td>
<td></td>
</tr>
<tr>
<td>Mary Bates Neubauer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For this year’s program, we invited researchers, designers, and artists to investigate data for sustainable development, and to think about effective and provocative ways to represent complex interdependencies within and between ecological, socio-technical, political, and urban systems, as well as other types of interfaces between dynamic systems. An example of such interdependencies is what Ricardo Hausmann calls the “collective knowhow” of countries and regions. He argues that this knowhow is an important building block of the wealth of nations, and that data collection and data visualization can help to identify feasible paths for economic progress.

In addition, we encouraged the submission of projects that focus on the myriad relationships between process and artifact, and which explore the creative and practical processes required to produce data-driven artworks, visualizations, and installations. We are interested in understanding how creative works can influence and transform the way we understand the world around us, but also in articulating the processes and methodologies that generate these works. It is important to share such practical knowledge, and this year’s program features projects that highlight the design process and illustrate how reflection-in-action takes place.

The featured installations and performances include work by both established and emerging media artists and designers from across the globe, including Accurat, Pierre Amelot, Owen Connec, Scottie Chih-Chieh Huang, Yu-Chun Huang, John Hwong, Adriene Jenik, Hyomin Kim, Inhye Lee, Mick Lorusso, Giorgia Lupi, Mauro Martino, Ryan McGee, Kate McManus, Jeremy Muller, Clarissa Ribeiro, Herbert Rocha, Ozge Samanci, Philipp Schmitt, Wonyoung So, Tyler Starr, and Hendrik Strobelt. Additionally, a number of creative data visualization demonstrations are presented on the opening night of the exhibition.

This event would not be possible without the support and effort of many people, and we wish to thank Hilary Harp and Byron Lahey, our local chairs, as well as everyone on the IEEE VIS Conference Committee, especially James Ahrens, Ross Maciejewski, Gautam Chaudhary, Meghan Haley, Loretta Auvil, and Maria Velez. We also gratefully acknowledge the expert reviewers who served on the VISAP’17 Program Committee.
Fiber Optic Ocean is a large-scale, sculptural, data-driven interactive installation that generates procedural music and light from live data. Fiber Optic Ocean portrays the struggle of human beings to survive in the age of corporations via the metaphor of sharks in an ocean invaded by technology, and interprets what happens when technology invades the world’s oceans.

Three life-size shark skeletons are trapped in an ocean made of fiber optic threads. The piece procedurally composes music made with trombone and choral voices generated by data coming from the GPS locations of tagged live sharks and human use of internet. The group of fiber optic cables going through the sharks blink at a rate based on speed of live sharks tracked with GPS data.
A city’s tree canopy is an important and integral part of urban life. However, the average citizen is often removed from understanding the distribution and make up of their neighborhood’s or city’s trees. How, then, can citizens be better engaged in this process so that they can play a more integral role in helping to shape the green canopies in their neighborhoods?

Treepedia aims to examine cities’ greenery by developing a metric called Green View Index, thereby making it possible to see the difference between streets and cities as a whole. The Green View Index utilizes Google Street View panoramas and provides a platform by which cities can evaluate and compare green canopy coverage. Through this platform, we are able to get a better sense of how people on a street perceive the number of trees. It enables scientists, planners and citizens alike to explore the urban tree canopy and take action to improve it.
"The Sky is Falling..." is the 3rd in an ongoing series of performances that make up The Data Humanization Project.

The Data Humanization Project re-asserts the connection of data to human scale and context. In contrast to a trend towards visualizing big data, each “data humanization” performance seeks to physically translate a single datapoint so that it can be more fully comprehended. Chosen datapoints are number that trouble or baffle the artist, which she seeks to imprint within her body. The artist invites her audiences to serve as witnesses and aids.

The chose number for The Sky is Falling is a contested one: the number of civilians killed as a result of drone strikes by the US military. Performed from sunup to sundown on November 13, 2016; “The Sky is Falling...” presents edited video of the live-streamed performance.
Forma Fluens (Latin for “flowing form”) reveals an overlapping collection of drawings generated by over 100,000 authors. Each image is slightly different—in the words of William Blake, “Every eye sees differently”—but when viewed as a collection the drawings self-correct, and an iconographic image of the represented object emerges. These 100,000 people work as one, obtaining a dynamic, unfinished effect, which nonetheless is able to convey life-like objects. That is, this crowd-generated drawing lets each form flow—forma fluens.
The Ghost in the Dandelion is an interactive installation that incorporates physiological measurement. A biosensor analyzes a viewer’s facial expressions and converts them to a poetic visual representation in the form of animated dandelion, displayed on a mirrored surface. The mirror both reflects the image of a person and also functions as a presentation screen. Using a generative algorithm, the animated dandelion “blooms” once it perceives a viewer standing in front of the screen, showing a range of diverse forms and behaviors that are controlled by the viewer’s expression. These visual patterns emphasize the symbiosis of data visualization and human mirroring.
Computed Curation is a photobook created by a computer. Taking the human editor out of the loop, it uses machine learning and computer vision tools to curate a series of photos from an archive of pictures.

Machine learning based image recognition tools are already adept at recognizing training images (umbrella, dog on a beach, car), but quickly expose their flaws and biases when tasked with more complex input. In Computed Curation, these flaws surface in often bizarre and sometimes poetic captions, tags and connections. Moreover, by urging the viewer to constantly speculate on the logic behind its arrangement, the book teaches how to see the world through the eyes of an algorithm.

In this sense, Computed Curation is not a data visualization in the most literal way, but a piece of data art offering a glimpse into the metrics, aesthetics and poetry of machine learning, computer vision and their visualization tools.
KKK Redress Papers: Identification of Cars Participating in Klan Rally at Montgomery Alabama, March 21, 1965 is a site-specific work visualizing a 92-car motorcade organized by the United Clans of America, Inc. that the FBI linked to the murder of civil rights worker Viola Liuzzo on March 25, 1965. The form of this work takes advantage of the immersive effects of panoramas. Google Maps was used to accurately retrace the parade route on the contemporary Montgomery cityscape. Screen grabs were then tiled together and edited to create the correlation between vehicles and the projection of racist ideology through city streets with architecture revealing layers of history.
Conceived as a peaceful and playful exploration of the interstellar space, this augmented reality and sound installation invites the audience to access the experiential dimension of space technologies and to explore how the huge amount of data derived from space exploration can be appropriated and integrated into the artist’s poetics. Walking through the installation holding an iPad mini, the audience will find themselves immersed in a soundscape populated with 3D models derived from actual microscale images. The 3D models were generated via parametric design strategies from NASA Stardust Discovery-class mission’s image database of aerogel samples, which have captured cosmic dust particles. The mission was the first to return samples from a comet and from interstellar space.
Spatial Magnetic Field Visualization is a kinetic art installation consisted of three-axis solenoids and a three-dimensional grid of ball compasses visualizing the unseen forces of magnetic field changes. The solenoids are connected to an Arduino-based system which is programmed to generate magnetic fields either from recorded science data or a magnetometer that detects ambient magnetic fields to provide real-time measurements.

It is a physical space that emulates the electromagnetic connection between the Sun and Earth, the invisible yet ubiquitous forces in nature, which has a profound effect on us residing on Earth. The impact of what is now called “space weather” on the human life and technology (e.g., GPS, radio communication, power transmission, etc) is substantial, significant enough for President Obama to call for an executive order in preparation for space weather-related disasters. One purpose behind this project is to create conversations about this scientific topic.
Museums exhibit much of today’s art, yet a large portion of their collections remain in storage and out of view. As Human-Computer Interaction designers, we wanted to utilize technology to make this ‘hidden’ art accessible to the general public and enable new ways of interacting with it. This is made possible by the recent trends in the digitization of art, spearheaded by global initiatives such as Google Arts and Culture, or more local efforts led by individual museums. For our project, we focused on The Rijksmuseum, the largest art museum in Amsterdam and notable for masterpieces by Rembrandt, Frans Hals, and Johannes Vermeer, because of its renovation in 2013 and its forward-thinking digital initiatives. Using The Rijksmuseum’s API, we enable users to digitally explore and interact with its collection, in ways previously unavailable, using four novel web-based ‘exhibits’.
Giorgia Lupi co-founded Accurat, a data-driven design firm with offices in Milan and New York where she is the design director. She received her M-Arch at FAF in Ferrara, Italy, and earned a PhD in Design at Politecnico di Milano. She relocated to New York City from Italy where she now lives. She is co-author of Dear Data, an aspirational hand-drawn data visualization book you will find in bookshops in the US (Princeton Architectural Press) and UK (Penguin Random House UK). The original set of postcards has been recently acquired as part of the permanent collection of the Museum of Modern Art. She recently gave a TED TALK on her Humanistic approach to Data, and is presenting the Capstone Address at IEEE VIS 2017.
Voyager is a multi-media musical work for piano and web audio, composed and programmed by Jeremy Muller. It is based on the NASA voyager mission which sent twin spacecrafts to do flybys of Jupiter, Saturn, Uranus, Neptune, and continued on into interstellar space. The data about each planet and their respective moons is sonified: the distances from the planet to each satellite corresponds to the pitch of the sound, while the satellites’ diameters correspond to loudness. The audience is also invited to participate in the musical piece with their own devices: phones, tables, and computers. Each device is a small grain in the overall sonic texture—using data provided by NASA to determine musical parameters. The piano soloist represents each one of the four planets, while the members of the audience represent the planet satellites.
VOSIS is a live audio-visual performance and software installation involving audification of pixel data from black-and-white photographs, videos, and live camera streams. Rather than emphasizing visualization of sound, VOSIS inverts typical paradigms to explore the sonification of imagery. The VOSIS iPad app allows for real-time, spatial sound synthesis via pixel filtering and manipulation.

Within the software no arbitrary visual to sound mappings are used. Rather, grayscale pixel values are scanned as audio waveforms and all filtering is applied to the imagery, rather than the sound. This method produces an objective, rather than subjective connection between visuals and the sounds they produce. As color is not of consideration, visual shape becomes most deterministic of sound timbre.
PARTICLE FLOW FIREWORX

stefan reinhardt / markus huber / daniel weiskopf
1 stuttgart media university
2 university of stuttgart

/ OVERVIEW
obstacles in a highly dynamic fluid flow unleash a luminous firework.
this work shows animated flow visualizations of particle-based fluid simulations. the
particles are driven through the volume governed by fluid dynamics. due to the highly
deformable nature of fluid, typical flow patterns arise. by visualizing the particle trajec-
tories, splashing particles caused by collision objects result in spark effects as seen in
fireworks. particle flow fireworx emphasizes the aesthetics of dynamically changing
shapes of liquids and reveal major trends as well as outliers.
the animation offers a different view on fluid motion, a decelerated view on changing
simulation states of the substance, and highlighting aspects that are hidden in
common representations.

/ RELATION TO VISAP
one of the main targets of physically-based simulations is to create plausible and visu-
ally appealing animations. for most applications, a surface representation of the fluid
such as an isosurface is used. however, in the development and analysis of simulations,
visualization techniques based on the underlying particles are used as visual debug-
ing tools to gain insights in the internal behaviour of the system. this is a typical case
of flow visualization using animated graphics to highlight flow patterns and outliers. in
doing so, features are visualized that are barely visible in the final animations.

Against the Flow
Kuno Kurzhals, Daniel Weiskopf

Less Ephemeral
Marco Pinter

Causes and Effects
Yoon Chung Han, Praful Surve, Subin Kim, Joshua Cuellar

How is Delhi Slowing Down?
Aseem Agarwal

Wage Inequality in Portugal
Pedro Cruz

NYC Stop & Frisk
Ben Rydal, Francis A. Pearman, II

Fig. 2: Screenshot from the Interaction Geography Slicer (IG S) showing all recorded stops in New York City over 10
years from New York City's Stop & Frisk Program. Data is from New York City Police Department. Stops without recorded spatial or
temporal coordinates are not shown.

© Author. Reprinted by Permission.

ABSTRACT
This paper adapts and uses a dynamic visualization environment I have developed and call the Interaction Geography Slicer (IGS) to
visualize data about New York City's Stop & Frisk Program. Findings and discussion focus on how this tool provides new ways
to view, interact with and query large-scale data sets over space and through time to support analysis of and public discussion
about New York City's Stop & Frisk Program.

Keywords: New York City, Stop and Frisk, Crime, Time Geography, Interaction Geography, Space-Time Visualization, Data Visualization, Art-Science-Technology Collaborations.

Index Terms: J.5 [Arts and Humanity]: Architecture; I.3.m: [Computer Graphics]: Miscellaneous: H.5.m. [Information
terfaces and presentation (e.g., HCI)].
Sustain & Decay Exhibition Opening
Tuesday, October 3rd, 6:30pm-9pm, Room 301-A

Papers Track, Session 1
Wednesday, October 4th, 8:30am-10:10am, Room 101-ABC
Session chair: Jeremy Boy

Adapted Dorling Cartogram on Wage Inequality in Portugal
Pedro Cruz

Understanding People’s Interaction with Neural Sci-Art
Manuela Garretón, Karina Hyland, and Denis Parra

Visualizing Causes and Effects of California Sea Lion Unusual Mortality Event (UME)
Yoon Chung Han, Praful Surve, Subin Kim, and Josh Cuellar

Papers Track, Session 2
Thursday, October 5th, 8:30am-10:10am, Room 101-ABC
Session chair: Angus Forbes

Spatial Reliefs: Cross-Scale Space-Scapes
Clarissa Ribeiro, Mick Lorusso, and Herbert Rocha

Fiber Optic Ocean: Merging Media for Data Representation
Ozge Samanci and Adam Snyder

Using the Interaction Geography Slicer to Visualize New York City Stop & Frisk
Ben Rydal Shapiro and Francis A. Pearman, II

3D Visualization of Genetic Networks Using Diverse Art Materials
Jennifer Weiler and Kat Fowler

Dear Data Studio with Giorgia Lupi
Thursday, October 5th, 4:15pm-5:55pm, Room 103-A

ViSKids and ViSAP jointly present a special event with the ViS capstone speaker Giorgia Lupi, an award winning information designer who co-founded and is design director of the data-driven design firm Accurat. Giorgia is co-author of Dear Data, an inspirational hand-drawn data visualization book. She brings the spirit of this book to ViS in a live participatory visualization session. Giorgia will guide participants through the process of manually visualizing data through drawing, following the visual language of different abstract paintings.

The IEEE VIS 2017 Arts Program takes place at the Phoenix Convention Center in Phoenix, Arizona during the first week of October 2017.

General Chairs
Angus Forbes, University of California, Santa Cruz
https://creativecoding.soe.ucsc.edu
angus@ucsc.edu

Jeremy Boy, United Nations Global Pulse
http://jyby.eu
myjyby@gmail.com

Exhibition Chairs
Esteban Garcia Bravo, Purdue University
http://snebtor.org
garcia0@purdue.edu

Yoon Chung Han, California State University, Fullerton
http://yoonchunghan.com
yohan@fullerton.edu

Local Chairs
Hilary Harp, Arizona State University
http://hilaryharp.com
hilary.harp@asu.edu

Byron Lahey, Arizona State University
http://artsmediaengineering.asu.edu
byron.lahey@asu.edu

Program Committee
Julieta Aguilera, Yeohyun Ahn, Basak Alper, Kayla Anderson, Andres Burbano, Aril Camci, Bruce Campbell, Pedro Miguel Cruz, Margaret Dolinsky, Ronak Etemadpour, Julie Freeman, Laurent Grisoni, Tobias Isenberg, Andy Johnson, Johnathon Kirk, Joshua Levine, Shannon McNullen, Isabel Meirelles, Till Nagel, Dietmar Offenhuber, Stefanie Posavec, Sabrina Raaf, Charlie Roberts, Ozge Samanci, Francesca Samsel, Chad Steed, Lauren Thorsen, Daria Tsoupikova, Ruth West, Daniel Weskopf, Fabian Winkler, Ruth West, Romain Vuillemot, Rebecca Ruge Xu

Editors
Angus Forbes
Jeremy Boy
Esteban Garcia Bravo
Yoon Chung Han

Catalog Design
Yoon Chung Han

Video Edit
Esteban Garcia Bravo

Sponsors
Purdue University
Arizona State University